[1] Heinrich H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years[J]. Quaternary Research, 1988, 29(2): 142-152.
[2] Bond G, Heinrich H, Broecker W, et al. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period[J]. Nature, 1992, 360(6401): 245-248.
[3] Bond G C, Showers W, Elliot M, et al. The North Atlantic's 1-2 kyr climate rhythm: Relation to Heinrich Events, Dansgaard/Oeschger cycles and the Little Ice Age[M]//Clark P U, Webb R S, Keigwin L D. Mechanisms of global climate change at millennial time scales. Washington DC: American Geophysical Union, 1999: 35-58.
[4] Sanchez Goñi M F, Harrison S P. Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology[J]. Quaternary Science Reviews, 2010, 29(21/22): 2823-2827.
[5] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.
[6] Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375(6529): 305-308.
[7] Sun Y B, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1): 46-49.
[8] Zhang H B, Griffiths M L, Chiang J C H, et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I[J]. Science, 2018, 362(6414): 580-583.
[9] 郭其蕴,蔡静宁,邵雪梅,等. 1873~2000年东亚夏季风变化的研究[J]. 大气科学,2004,28(2):206-215.

Guo Qiyun, Cai Jingning, Shao Xuemei, et al. Studies on the variations of East-Asian summer monsoon during A D 1873~2000[J]. Chinese Journal of Atmospheric Sciences, 2004, 28(2): 206-215.
[10] 黄荣辉,陈际龙,刘永. 我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系[J]. 大气科学,2011,35(4):589-606.

Huang Ronghui, Chen Jilong, Liu Yong. Interdecadal variation of the leading modes of summertime precipitation anomalies over eastern China and its association with water vapor transport over East Asia[J]. Chinese Journal of Atmospheric Sciences, 2011, 35(4): 589-606.
[11] 黄荣辉,顾雷,陈际龙,等. 东亚季风系统的时空变化及其对我国气候异常影响的最近研究进展[J]. 大气科学,2008,32(4):691-719.

Huang Ronghui, Gu Lei, Chen Jilong, et al. Recent progresses in studies of the temporal-spatial variations of the East Asian monsoon system and their impacts on climate anomalies in China[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 691-719.
[12] Ge Q S, Guo X F, Zheng J Y, et al. Meiyu in the middle and lower reaches of the Yangtze River since 1736[J]. Chinese Science Bulletin, 2008, 53(1): 107-114.
[13] Kong X G, Wang Y J, Wu J Y, et al. Complicated responses of stalagmite δ13C to climate change during the last glaciation from Hulu Cave, Nanjing, China[J]. Science China (Seri. D): Earth Sciences, 2005, 35(12): 2174-2181.
[14] Wu J Y, Wang Y J, Cheng H, et al. An exceptionally strengthened East Asian summer monsoon event between 19.9 and 17.1 ka BP recorded in a Hulu stalagmite[J]. Science China (Seri. D): Earth Sciences, 2009,52(3): 360-368.]
[15] North Greenland Ice Core Project Members. High-resolution record of northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005): 147-151.
[16] Bond G, Broecker W, Johnsen S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice[J]. Nature, 1993, 365(6442): 143-147.
[17] Eynaud F, De Abreu L, Voelker A, et al. Position of the Polar Front along the western Iberian margin during key cold episodes of the last 45 ka[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(7): Q07U05.
[18] Tzedakis P C, Frogley M R, Lawson I T, et al. Ecological thresholds and patterns of millennial-scale climate variability: The response of vegetation in Greece during the last glacial period[J]. Geology, 2004, 32(2): 109.
[19] Combourieu Nebout N, Turon J L, Zahn R, et al. Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 k.y[J]. Geology, 2002, 30(10): 863-866.
[20] Hall B L, Porter C T, Denton G H, et al. Extensive recession of Cordillera Darwin glaciers in southernmost South America during Heinrich Stadial 1[J]. Quaternary Science Reviews, 2013, 62: 49-55.
[21] Putnam A E, Schaefer J M, Denton G H, et al. Warming and glacier recession in the Rakaia valley, southern Alps of New Zealand, during Heinrich Stadial 1[J]. Earth and Planetary Science Letters, 2013, 382: 98-110.
[22] Sachs J P, Anderson R F. Increased productivity in the subantarctic ocean during Heinrich events[J]. Nature, 2005, 434(7037): 1118-1121.
[23] EPICA community Members. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444(7116): 195-198.
[24] Loulergue L, Schilt A, Spahni R, et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years[J]. Nature, 2008, 453(7193): 383-386.
[25] Jouzel J, Masson-Delmotte V, Cattani O, et al. Orbital and millennial antarctic climate variability over the past 800,000 Years[J]. Science, 2007, 317(5839): 793-796.
[26] Parrenin F, Masson-Delmotte V, Köhler P, et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming[J]. Science, 2013, 339(6123): 1060-1063.
[27] Stenni B, Buiron D, Frezzotti M, et al. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation[J]. Nature Geoscience, 2011, 4(1): 46-49.
[28] Barker S, Diz P, Vautravers M J, et al. Interhemispheric Atlantic seesaw response during the last deglaciation[J]. Nature, 2009, 457(7233): 1097-1102.
[29] McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985): 834-837.
[30] Lippold J, Grützner J, Winter D, et al. Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic meridional overturning circulation?[J]. Geophysical Research Letters, 2009, 36(12): L12601.
[31] Deplazes G, Lückge A, Peterson L C, et al. Links between tropical rainfall and North Atlantic climate during the last glacial period[J]. Nature Geoscience, 2013, 6(3): 213-217.
[32] Hessler I, Dupont L, Bonnefille R, et al. Millennial-scale changes in vegetation records from tropical Africa and South America during the last glacial[J]. Quaternary Science Reviews, 2010, 29(21/22): 2882-2899.
[33] Carolin S A, Cobb K M, Adkins J F, et al. Varied response of western Pacific hydrology to climate forcings over the last glacial period[J]. Science, 2013, 340(6140): 1564-1566.
[34] Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum[J]. Nature, 2007, 449(7161): 452-455.
[35] Wang X F, Auler A S, Edwards R L, et al. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years[J]. Geophysical Research Letters, 2007, 34(23): L23701.
[36] Tierney J E, Russell J M, Huang Y S, et al. Northern hemisphere controls on tropical southeast African climate during the past 60,000 Years[J]. Science, 2008, 322(5899): 252-255.
[37] Jullien E, Grousset F, Malaizé B, et al. Low-latitude “dusty events” vs. high-latitude “icy Heinrich Events”[J]. Quaternary Research, 2007, 68(3): 379-386.
[38] Torfstein A, Goldstein S L, Stein M. Enhanced Saharan dust input to the Levant during Heinrich stadials[J]. Quaternary Science Reviews, 2018, 186: 142-155.
[39] Sijinkumar A V, Nagender Nath B, Clemens S. North Atlantic climatic changes reflected in the Late Quaternary foraminiferal abundance record of the Andaman Sea, North-eastern Indian Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 446: 11-18.
[40] Shakun J D, Burns S J, Fleitmann D, et al. A high-resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen[J]. Earth and Planetary Science Letters, 2007, 259(3/4): 442-456.
[41] Peterson L C, Haug G H, Hughen K A, et al. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last Glacial[J]. Science, 2000, 290(5498): 1947-1951.
[42] Stager J C, Ryves D B, Chase B M, et al. Catastrophic drought in the Afro-Asian Monsoon region during Heinrich event 1[J]. Science, 2011, 331(6022): 1299-1302.
[43] 明庆忠,苏怀,史正涛,等. 云南小中甸盆地湖相沉积记录的最近5次Heinrich事件[J]. 地理学报,2011,66(1):123-130.

Ming Qingzhong, Su Huai, Shi Zhengtao, et al. Last five heinrich events revealed by lacustrine sediments from Xiaozhongdian Basin in Yunnan province[J]. Acta Geographica Sinica, 2011, 66(1): 123-130.
[44] Zhang S R, Xiao J L, Xu Q H, et al. Differential response of vegetation in Hulun Lake region at the northern margin of Asian summer monsoon to extreme cold events of the last deglaciation[J]. Quaternary Science Reviews, 2018, 190: 57-65.
[45] Liu X T, Rendle-Bühring R, Henrich R. High-and low-latitude forcing of the East African climate since the LGM: Inferred from the elemental composition of marine sediments off Tanzania[J]. Quaternary Science Reviews, 2018, 196: 124-136.
[46] Jennerjahn T C, Ittekkot V, Arz H W, et al. Asynchronous terrestrial and marine signals of climate change during Heinrich events[J]. Science, 2004, 306(5705): 2236-2239.
[47] Wang X F, Auler A S, Edwards L, et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies[J]. Nature, 2004, 432(7018): 740-743.
[48] Crivellari S, Chiessi C M, Kuhnert H, et al. Increased Amazon freshwater discharge during Late Heinrich Stadial 1[J]. Quaternary Science Reviews, 2018, 181: 144-155.
[49] Strikis N M, Cruz F W, Barreto E A S, et al. South American monsoon response to iceberg discharge in the North Atlantic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): 3788-3793.
[50] Ayliffe L K, Gagan M K, Zhao J X, et al. Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation[J]. Nature Communications, 2013, 4: 2908.
[51] Denniston R F, Wyrwoll K H, Asmerom Y, et al. North Atlantic forcing of millennial-scale Indo-Australian monsoon dynamics during the last glacial period[J]. Quaternary Science Reviews, 2013, 72: 159-168.
[52] Muller J, Kylander M, Wüst R A J, et al. Possible evidence for wet Heinrich phases in tropical NE Australia: The Lynch's Crater deposit[J]. Quaternary Science Reviews, 2008, 27(5/6): 468-475.
[53] Rhodes R H, Brook E J, Chiang J C H, et al. Enhanced tropical methane production in response to iceberg discharge in the North Atlantic[J]. Science, 2015, 348(6238): 1016-1019.
[54] Denton G H, Anderson R F, Toggweiler J R, et al. The last Glacial termination[J]. Science, 2010, 328(5986): 1652-1656.
[55] Rahmstorf S. Ocean circulation and climate during the past 120,000 years[J]. Nature, 2002, 419(6903): 207-214.
[56] Veres D, Bazin L, Landais A, et al. The Antarctic ice core chronology (AICC2012): An optimized multi-parameter and multi-site dating approach for the last 120 thousand years[J]. Climate of the Past, 2013, 9(4): 1733-1748.
[57] Zhang H B, Griffiths M L, Huang J H, et al. Antarctic link with East Asian summer monsoon variability during the Heinrich Stadial–Bølling interstadial transition[J]. Earth and Planetary Science Letters, 2016, 453: 243-251.
[58] Chen S T, Wang Y J, Cheng H, et al. Strong coupling of Asian Monsoon and Antarctic climates on sub-orbital timescales[J]. Scientific Reports, 2016, 6: 32995.
[59] Cai Y J, Fung I Y, Edwards R L, et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10): 2954-2959.
[60] Bar-Matthews M, Ayalon A, Matthews A, et al. Carbon and oxygen isotope study of the active water-carbonate system in a Karstic Mediterranean Cave: Implications for paleoclimate research in semiarid regions[J]. Geochimica et Cosmochimica Acta, 1996, 60(2): 337-347.
[61] Cheng H, Edwards R L, Broecker W S, et al. Ice age terminations[J]. Science, 2009, 326(5950): 248-252.
[62] 张美良,程海,林玉石,等. 贵州荔波1.5万年以来石笋高分辨率古气候环境记录[J]. 地球化学,2004,32(1):65-74.

Zhang Meiliang, Cheng Hai, Lin Yushi, et al. High resolution paleoclimatic environment records from a stalagmite of Dongge Cave since 15 000 a in Libo, Guizhou province, China[J]. Geochimica, 2004, 32(1): 65-74.
[63] 张美良,程海,袁道先,等. 末次冰期贵州七星洞石笋高分辨率气候记录与Heinrich事件[J]. 地球学报,2004,25(3):337-344.

Zhang Meiliang, Cheng Hai, Yuan Daoxian, et al. The high resolution climate records from two stalagmites in Qixing Cave of Guizhou and the Heinrich events of the last glacial period[J]. Acta Geoscientica Sinica, 2004, 25(3): 337-344.
[64] Yang Y, Yuan D X, Cheng H, et al. Precise dating of abrupt shifts in the Asian monsoon during the last deglaciation based on stalagmite data from Yamen Cave, Guizhou province, China[J]. Science China Earth Sciences, 2010, 53(5): 633-641.
[65] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 71-86.
[66] Li Y L, Chen X, Xiao X Y, et al. Diatom-based inference of Asian monsoon precipitation from a volcanic lake in southwest China for the last 18.5 ka[J]. Quaternary Science Reviews, 2018, 182: 109-120.
[67] Xiao X Y, Haberle S G, Shen J, et al. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan province, southwestern China[J]. Quaternary Science Reviews, 2014, 86: 35-48.
[68] Bian H Y, Pang J L, Huang C C, et al. The response of transitional pedogenic characteristics of loess in the Yunxian Basin to abrupt climatic events in the northern subtropics since the Last Glacial Maximum[J]. CATENA, 2018, 171: 166-175.
[69] 张德忠,白益军,桑文翠,等. 末次冰消期亚洲季风强度变化的黄土高原西部万象洞石笋灰度记录[J]. 第四纪研究,2011,31(5):791-799.

Zhang Dezhong, Bai Yijun, Sang Wencui, et al. Asian monsoon intensity variations during the last deglaciation recorded by stalagmite gray scale from Wanxiang Cave, western Loess Plateau[J]. Quaternary Sciences, 2011, 31(5): 791-799.
[70] 谭明. 环流效应:中国季风区石笋氧同位素短尺度变化的气候意义:古气候记录与现代气候研究的一次对话[J]. 第四纪研究,2009,29(5):851-862.

Tan Ming. Circulation effect: Climatic significance of the short term variability of the oxygen isotopes in stalagmites from monsoonal China: Dialogue between paleoclimate records and modern climate research[J]. Quaternary Sciences, 2009, 29(5): 851-862.
[71] Tan M. Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China[J]. Climate Dynamics, 2014, 42(3/4): 1067-1077.
[72] Maher B A. Holocene variability of the East Asian summer monsoon from Chinese cave records: A re-assessment[J]. The Holocene, 2008, 18(6): 861-866.
[73] Pausata F S R, Battisti D S, Nisancioglu K H, et al. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event[J]. Nature Geoscience, 2011, 4(7): 474-480.
[74] Li D, Tan L C, Cai Y J, et al. Is Chinese stalagmite δ18O solely controlled by the Indian summer monsoon?[J]. Climate Dynamics, 2019, 53(5/6): 2969-2983.
[75] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646.
[76] 张美良,林玉石,覃嘉铭. 桂林水南洞石笋的沉积学特征[J]. 沉积学报,1999,17(2):233-239.

Zhang Meiliang, Lin Yushi, Qin Jiaming. Sedimentological characteristics of a stalagmite from Shuinan Cave, Guilin[J]. Acta Sedimentologica Sinica, 1999, 17(2): 233-239.
[77] 崔田丰,段福才,张伟宏,等. 石笋初始234U/238U值的冰量周期特征及其环境意义:以湖北三宝洞为例[J]. 沉积学报,2019,37(2):301-308.

Cui Tianfeng, Duan Fucai, Zhang Weihong, et al. Ice volume cycle characteristics and the environmental significance of the initial 234U/238U ratio inferred from stalagmites: A case study from Sanbao Cave, Hubei[J]. Acta Sedimentologica Sinica, 2019, 37(2): 301-308.
[78] 黄俊华,胡超涌,周群峰,等. 长江中游和尚洞石笋的高分辨率同位素、微量元素记录及古气候研究[J]. 沉积学报,2002,20(3):442-446.

Huang Junhua, Hu Chaoyong, Zhou Qunfeng, et al. Study on high-resolution carbon, oxygen isotope and trace element records and paleoclimate from Heshang Cave, the middle reach of the Yangtse River[J]. Acta Sedimentologica Sinica, 2002, 20(3): 442-446.
[79] 李辰丝,杨勋林,黄帆,等. 重庆羊子洞MIS5a/MIS4转换时期石笋微量元素记录及其气候意义[J]. 沉积学报. 2015,33(2):299-305.

Li Chensi, Yang Xunlin, Huang Fan, et al. Stalagmite trace element and its implications from Yangzi Cave during 76~69 ka B.P.[J]. Acta Sedimentologica Sinica, 2015, 33(2): 299-305.
[80] 史维浚. 铀水文地球化学原理[M]. 北京:原子能出版社,1990.

Shi Weijun. Principles of uranium hydrogeochemistry[M]. Beijing: Atomic Energy Press, 1990.
[81] Gascoyne M. Geochemistry of the actinides and their daughters[M]//Ivanovich M, Harmon R S. Uranium-series disequilibrium: Applications to earth, marine and environmental sciences. Oxford: Clarendon Press, 1992.
[82] 牟保磊. 元素地球化学[M]. 北京:北京大学出版社,1999.

Mou Baolei. Element geochemistry[M]. Beijing: Peking University Press, 1999.
[83] Kuang R Y, Wang Y J, Zhang X H, et al. Implications for soil environment from uranium isotopes of stalagmites[J]. Chinese Science Bulletin, 2002, 47(19): 1653-1658.
[84] Kaufman A, Wasserburg G J, Porcelli D, et al. U-Th isotope systematics from the Soreq cave, Israel and climatic correlations[J]. Earth and Planetary Science Letters, 1998, 156(3/4): 141-155.
[85] Han Z Y, Li X S, Yi S W, et al. Extreme monsoon aridity episodes recorded in South China during Heinrich Events[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440: 467-474.
[86] 董进国,刁伟,孔兴功. 湖北三宝洞石笋238U值变化的古气候意义[J]. 海洋地质与第四纪地质,2013,33(1):129-135.

Dong Jinguo, Diao Wei, Kong Xinggong. Variation in uranium isotopes of stalagmites from Sanbao Cave, Hubei province: Implications for palaeoclimate[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 129-135.
[87] 程汝楠,尹金双. 潮湿气候下天然水中铀的迁移形式和沉淀富集条件的探讨[J]. 沉积学报,1985,3(1):42-53.

Cheng Ru'nan, Yin Jinshuang. On migration form and sedimentary enrichments of uranium in natural water under wet climate in South China[J]. Acta Sedimentologica Sinica, 1985, 3(1): 42-53.
[88] Langmuir D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits[J]. Geochimica et Cosmochimica Acta, 1978, 42(6): 547-569.
[89] Zhang W H, Wu J Y, Wang Y, et al. A detailed East Asian monsoon history surrounding the ‘Mystery Interval’ derived from three Chinese speleothem records[J]. Quaternary Research, 2014, 82(1): 154-163.
[90] Cheng H, Zhang H W, Zhao J Y, et al. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China (Seri. D): Earth Sciences, 2019, 62(10): 1489-1513.