[1] Walther J. Einleitung in die geologie als historische wissenschaft[M]. Jena, Germany: Gustav Fischer, 1893.
[2] Middleton G V. Johannes Walther’s law of the correlation of facies[J]. GSA Bulletin, 1973, 84(3): 979-988.
[3] 王成善,李祥辉. 沉积盆地分析原理与方法[M]. 北京:高等教育出版社,2003.

Wang Chengshan, Li Xianghui. Sedimentary basin: From principles to analyses[M]. Beijing: Higher Education Press, 2003.
[4] 陈建强,周洪瑞,王训练. 沉积学及古地理学教程[M]. 北京:地质出版社,2004.

Chen Jianqiang, Zhou Hongrui, Wang Xunlian. Sedimentology and sedimentary palaeogeography[M]. Beijing: Geological Publishing House, 2004.
[5] 朱筱敏. 层序地层学[M]. 东营:石油大学出版社,2000.

Zhu Xiaomin. Sequence stratigraphy[M]. Dongying: China University of Petroleum Press, 2000.
[6] Catuneanu O. Principles of sequence stratigraphy[M]. Amsterdam, Boston, Heidelberg: Elsevier, 2006: 375.
[7] Carroll A R. Xenoconformities and the stratigraphic record of paleoenvironmental change[J]. Geology, 2017, 45(7): G38952.1.
[8] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
[9] Qiu Z, Zou C N. Controlling factors on the formation and distribution of “sweet-spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J]. Journal of Asian Earth Sciences, 2020, 194: 103989.
[10] 刘本培. 地史学教程[M]. 北京:地质出版社,1986.

Liu Benpei. Course of geological history[M]. Beijing: Geological Publishing House, 1986.
[11] Teichert C. Concepts of facies[J]. AAPG Bulletin, 1958, 42(11): 2718-2744.
[12] 王清晨. 事件沉积学[J]. 地球科学进展,1991(3):90-91.

Wang Qingchen. Event sedimentology[J]. Advances in Earth Science, 1991(3): 90-91.
[13] 龚一鸣,张克信. 地层学基础与前沿[M]. 武汉:中国地质大学出版社,2007.

Gong Yiming, Zhang Kexin. Basic and frontiers in stratigraphy[M]. Wuhan: China University of Geosciences Press, 2007.
[14] Dickinson W R, Klute M A, Hayes M J, et al. Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region[J]. GSA Bulletin, 1988, 100(7): 1023-1039.
[15] Smith M E, Carroll A R, Singer B S. Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western united states[J]. GSA Bulletin, 2008, 120(1/2): 54-84.
[16] Carroll A R, Bohacs K M. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls[J]. Geology, 1999, 27(2): 99-102.
[17] Doebbert A C, Johnson C M, Carroll A R, et al. Controls on Sr isotopic evolution in lacustrine systems: Eocene Green River Formation, Wyoming[J]. Chemical Geology, 2014, 380: 172-189.
[18] Bohacs K M, Carroll A R, Neal J E, et al. type Lake-basin, potential source, and hydrocarbon character: An integrated sequence-stratigraphic-geochemical framework[M]//Gierlowski-Kordesch E H, Kelts K R. Lake basins through space and time. AAPG Studies in Geology46, 2000:3-34.
[19] Pietras J T, Carroll A R, Rhodes M K. Lake basin response to tectonic drainage diversion: Eocene Green River Formation, Wyoming[J]. Journal of Paleolimnology, 2003, 30(2): 115-125.
[20] Smith M E, Carroll A R, Jicha B R, et al. Paleogeographic record of Eocene farallon slab rollback beneath western north America[J]. Geology, 2014, 42(12): 1039-1042.
[21] Rhodes M K, Carroll A R. Lake type transition from balanced-fill to overfilled: Laney member, green river formation, Washakie basin, Wyoming[M]//Smith M E, Carroll A R. Stratigraphy and paleolimnology of the Green River Formation, western USA. Dordrecht: Springer, 2015.
[22] Roehler H W. Correlation, composition, distribution areal, and thickness of Eocene stratigraphic units, Greater Green River Basin, Wyoming, Utah, and Colorado[R]. USGS Numbered Series, 1992.
[23] Smith M E, Carroll A R, Scott J J. Stratigraphic expression of climate, tectonism, and geomorphic forcing in an underfilled lake basin: Wilkins peak member of the Green River Formation[M]//Smith M E, Carroll A R. Stratigraphy and paleolimnology of the Green River Formation, western USA. Dordrecht: Springer, 2015.
[24] Feng Z Q, Jia C Z, Xie X N, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, northeast China[J]. Basin Research, 2010, 22(1): 79-95.
[25] Wang C S, Feng Z G, Zhang L M, et al. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin,Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 17-30.
[26] 王成善,冯志强,王璞珺. 白垩纪松辽盆地松科1井大陆科学钻探工程[M]. 北京:科学出版社,2016.

Wang Chengshan, Feng Zhiqiang, Wang Pujun. Initial report of continental scientific drilling project of the Cretaceous Songliao Basin (SK1)[M]. Beijing: Science Press, 2016.
[27] Gao Y, Wang C S, Wang P J, et al. Progress on continental scientific drilling project of Cretaceous Songliao Basin (SK-1 and SK-2)[J]. Science Bulletin, 2019, 64(2): 73-75.
[28] 程日辉,王国栋,王璞珺,等. 松科1井南孔白垩系姚家组沉积序列精细描述:岩石地层、沉积相与旋回地层[J]. 地学前缘,2009,16(2):272-287.

Cheng Rihui, Wang Guodong, Wang Pujun, et al. Description of cretaceous sedimentary sequence of the Yaojia Formation recovered by CCSD-SK-Is borehole in Songliao Basin: Lithostratigraphy, sedimentary facies and cyclic stratigraphy[J]. Earth Science Frontiers, 2009, 16(2): 272-287.
[29] 高有峰,王璞珺,程日辉,等. 松辽盆地松科1井上白垩统嫩江组一、二段沉积序列厘米级精细刻画:岩性·岩相·旋回[J]. 地学前缘,2011,18(6):195-217.

Gao Youfeng, Wang Pujun, Cheng Rihui, et al. Centimeter-scale sedimentary sequence description of Upper Cretaceous Nenjiang Formation (Lower numbers 1&2): Lithostratigraphy, facies and cyclostratigraphy, based on the scientific drilling (SK1) borehole in the Songliao Basin[J]. Earth Science Frontiers, 2011, 18(6): 195-217.
[30] Xi D P, Wang X Q, Feng Z Q. et al. Discovery of Late Cretaceous foraminifera in the Songliao Basin: Evidence from SK-1 and implications for identifying seawater incursions[J]. Chinese Science Bulletin, 2011, 56(6): 253-256.
[31] Chamberlain C P, Wan X Q, Graham S A, et al. Stable isotopic evidence for climate and basin evolution of the Late Cretaceous Songliao Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 106-124.
[32] Hu J F, Peng P A, Liu M Y, et al. Seawater incursion events in a Cretaceous paleo-lake revealed by specific marine biological markers[J]. Scientific Reports, 2015, 5: 9508.
[33] Ji L M, Zhang M Z, Song Z G. The palynological record from Coniacian to Lower Campanian continental sequences in the Songliao Basin, northeastern China and its implications for palaeoclimate[J]. Cretaceous Research, 2015, 56: 226-236.
[34] Gao Y, Xi D P, Qin Z H, et al. Clay mineralogy of the first and second members of the Nenjiang Formation, Songliao Basin: Implications for paleoenvironment in the Late Cretaceous[J]. Science China Earth Sciences, 2018, 61(3): 327-338.
[35] Graham S A, Hendrix M S, Wang L B, et al. Collisional successor basins of western China: Impact of tectonic inheritance on sand composition[J]. GSA Bulletin, 1993, 105(3): 323-344.
[36] 支东明,唐勇,郑孟林,等. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素[J]. 中国石油勘探,2019,24(5):615-623.

Zhi Dongming, Tang Yong, Zheng Menglin, et al. Geological characteristics and accumulation controlling factors of shale reservoirs in Fengcheng Formation, Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5): 615-623.
[37] Han Y G, Zhao G C. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 129-152.
[38] Gao Y, Huang H, Tao H F, et al. Paleoenvironmental setting, mechanism and consequence of massive organic carbon burial in the Permian Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 2020, 194: 104222.
[39] 陈建平,王绪龙,邓春萍. 准噶尔盆地油气源、油气分布与油气系统[J]. 地质学报,2016,90(3):421-450.

Chen Jianping, Wang Xulong, Deng Chunping. Oil and gas source, occurrence and petroleum system in the Junggar Basin, Northwest China[J]. Acta Geologica Sinica, 2016, 90(3): 421-450.
[40] 曹剑,雷德文,李玉文,等. 古老碱湖优质烃源岩:准噶尔盆地下二叠统风城组[J]. 石油学报,2015,36(7):781-790.

Cao Jian, Lei Dewen, Li Yuwen, et al. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin[J]. Acta Petrolei Sinica, 2015, 36(7): 781-790.
[41] Gao G, Yang S R, Ren J L, et al. Geochemistry and depositional conditions of the carbonate-bearing lacustrine source rocks: A case study from the Early Permian Fengcheng Formation of Well FN7 in the northwestern Junggar Basin[J]. Journal of Petroleum Science and Engineering, 2018, 162: 407-418.
[42] 余宽宏,操应长,邱隆伟,等. 准噶尔盆地玛湖凹陷早二叠世风城组沉积时期古湖盆卤水演化及碳酸盐矿物形成机理[J]. 天然气地球科学,2016,27(7):1248-1263.

Yu Kuanhong, Cao Yingchang, Qiu Longwei, et al. Brine evolution of ancient lake and mechanism of carbonate minerals during the sedimentation of Early Permian Fengcheng Formation in Mahu Depression, Junggar Basin, China[J]. Natural Gas Geoscience, 2016, 27(7): 1248-1263.
[43] 张元元,李威,唐文斌. 玛湖凹陷风城组碱湖烃源岩发育的构造背景和形成环境[J]. 新疆石油地质,2018,39(1):48-54.

Zhang Yuanyuan, Li Wei, Tang Wenbin. Tectonic setting and environment of alkaline lacustrine source rocks in the Lower Permian Fengcheng Formation of Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 48-54.
[44] 赵玉龙,刘志飞. 古新世—始新世最热事件对地球表层循环的影响及其触发机制[J]. 地球科学进展,2007,22(4):341-349.

Zhao Yulong, Liu Zhifei. The impacts of the Paleocene-Eocene Thermal Maximum (PETM) event on earth surface cycles and its trigger mechanism[J]. Advances in Earth Science, 2007, 22(4): 341-349.
[45] McInerney F A, Wing S L. The Paleocene-Eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future[J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 489-516.
[46] Zachos J C, Röhl U, Schellenberg S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science, 2005, 308(5728): 1611-1615.
[47] Murphy B H, Farley K A, Zachos J C. An extraterrestrial 3He-based timescale for the Paleocene–Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5098-5108.
[48] Hull P M, Bornemann A, Penman D E, et al. On impact and volcanism across the Cretaceous-Paleogene boundary[J]. Science, 2020, 367(6475): 266-272.
[49] Schulte P, Alegret L, Arenillas I, et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary[J]. Science, 2010, 327(5970): 1214-1218.
[50] Schoene B, Eddy M P, Samperton K M, et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the End-Cretaceous mass extinction[J]. Science, 2019, 363(6429): 862-866.
[51] Sprain C J, Renne P R, Vanderkluysen L, et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary[J]. Science, 2019, 363(6429): 866-870.
[52] Blakey R C. Gondwana paleogeography from assembly to breakup-A 500 m.y. odyssey[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic ice age in time and space. Boulder, Colorado: Geological Society of America, 2008: 1-28.
[53] Nance R D, Murphy J B, Santosh M. The supercontinent cycle: A retrospective essay[J]. Gondwana Research, 2014, 25(1): 4-29.
[54] Finnegan S, Bergmann K, Eiler J M, et al. The magnitude and duration of Late Ordovician-Early Silurian glaciation[J]. Science, 2011, 331(6019): 903-906.
[55] Hallam A, Wignall P B. Mass extinctions and sea-level changes[J]. Earth-Science Reviews, 1999, 48(4): 217-250.
[56] 戎嘉余,黄冰. 生物大灭绝研究三十年[J]. 中国科学(D辑):地球科学,2014,44(3):377-404.

Rong Jiayu, Huang Bing. Study of Mass Extinction over the past thirty years: A synopsis[J]. Science China (Seri. D): Earth Sciences, 2014, 44(3): 377-404.
[57] 张元动,詹仁斌,甄勇毅,等. 中国奥陶纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):66-92.

Zhang Yuandong, Zhan Renbin, Zhen Yongyi, et al. Ordovician integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 49(1): 66-92.
[58] Hoffman P F, Kaufman A J, Halverson G P, et al. A neoproterozoic snowball earth[J]. Science, 1998, 281(5381): 1342-1346.
[59] 储雪蕾. 新元古代的“雪球地球”[J]. 矿物岩石地球化学通报,2004,23(3):233-238.

Chu Xuelei. "Snowball Earth" During the Neoproterozoic[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 23(3): 233-238.
[60] 冯东,陈多福,刘芊. 新元古代晚期盖帽碳酸盐岩的成因与“雪球地球”的终结机制[J]. 沉积学报,2006,24(2):235-241.

Feng Dong, Chen Duofu, Liu Qian. Formation of Late Neoproterozoic cap carbonates and termination mechanism of "Snowball Earth"[J]. Acta Sedimentologica Sinica, 2006, 24(2): 235-241.
[61] Yu W C, Algeo T J, Zhou Q, et al. Cryogenian cap carbonate models: A review and critical assessment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 552: 109727.
[62] Knoll A, Walter M, Narbonne G, et al. The Ediacaran period: A new addition to the geologic time scale[J]. Lethaia, 2006, 39(1): 13-30.
[63] 蒋干清,史晓颖,张世红. 甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐岩[J]. 科学通报,2006,51(10):1121-1138.

Jiang Ganqing, Shi Xiaoying, Zhang Shihong. Methane seeps, methane hydrate destabilization, and the Late Neoproterozoic postglacial cap carbonates[J]. Chinese Science Bulletin, 2006, 51(10): 1121-1138.
[64] 孙枢,王成善. “深时”(Deep Time)研究与沉积学[J]. 沉积学报,2009,27(5):792-801.

Sun Shu, Wang Chengshan. Deep time and sedimentology[J]. Acta Sedimentologica Sinica, 2009, 27(5): 792-801.
[65] 王成善,王天天,陈曦,等. 深时古气候对未来气候变化的启示[J]. 地学前缘,2017,24(1):1-17.

Wang Chengshan, Wang Tiantian, Chen Xi, et al. Paleoclimate implications for future climate change[J]. Earth Science Frontiers, 2017, 24(1): 1-17.
[66] Zou C N, Zhu R K, Chen Z Q, et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 2019, 189: 51-78.